The compound you described, 1-[[(4-ethoxyanilino)-sulfanylidenemethyl]amino]-3-[3-(trifluoromethyl)phenyl]thiourea, is a **small molecule**.
It's important to understand that without additional context, it's difficult to definitively state why this specific compound is important for research. However, we can analyze its structure and draw some inferences about its potential applications.
**Structure and Potential Applications**
* **Thiourea group:** The presence of a thiourea group is a common feature in compounds that exhibit biological activity. Thioureas are known to interact with proteins and enzymes, making them potential candidates for drug discovery.
* **Aromatic rings:** The compound contains an aromatic ring with a 3-trifluoromethylphenyl substituent. This aromatic group can contribute to lipophilicity and increase the compound's ability to interact with biological membranes. The trifluoromethyl group (CF3) is often introduced to enhance the compound's metabolic stability and pharmacokinetic properties.
* **Ethoxy group:** The ethoxy group attached to the aniline ring might influence the compound's solubility and interactions with biological targets.
**Potential Research Areas:**
Based on its structural features, this compound could be of interest in research areas like:
* **Drug discovery:** Its potential to interact with proteins and enzymes could make it a promising lead compound for developing new drugs for various diseases.
* **Material science:** Compounds with thiourea groups are known to have interesting properties, such as self-assembly and supramolecular interactions. This compound could be investigated for its potential in developing novel materials.
* **Analytical chemistry:** Thioureas are used as analytical reagents, and this compound could be investigated for its potential as a chelating agent or a colorimetric sensor.
**Importance for Research:**
The importance of this specific compound will depend on its specific properties and the specific research question being addressed.
**To get a better understanding of its importance, you would need additional information, such as:**
* **What biological activity is it being investigated for?**
* **What is the research goal?**
* **What are the specific properties of the compound that make it relevant to the research?**
Please provide more context so I can give you a more specific answer!
ID Source | ID |
---|---|
PubMed CID | 1929802 |
CHEMBL ID | 1465891 |
CHEBI ID | 116988 |
Synonym |
---|
MLS001012144 , |
smr000425320 |
CHEBI:116988 |
AKOS000352574 |
1-(4-ethoxyphenyl)-3-[[3-(trifluoromethyl)phenyl]carbamothioylamino]thiourea |
HMS2781M03 |
n-(4-ethoxyphenyl)-n'-[3-(trifluoromethyl)phenyl]hydrazine-1,2-dicarbothioamide |
STK794851 |
CHEMBL1465891 |
cid_1929802 |
1-[[(4-ethoxyanilino)-sulfanylidenemethyl]amino]-3-[3-(trifluoromethyl)phenyl]thiourea |
bdbm58157 |
1-p-phenetyl-3-[[3-(trifluoromethyl)phenyl]thiocarbamoylamino]thiourea |
Q27203609 |
Class | Description |
---|---|
(trifluoromethyl)benzenes | An organofluorine compound that is (trifluoromethyl)benzene and derivatives arising from substitution of one or more of the phenyl hydrogens. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 79.4328 | 0.0447 | 17.8581 | 100.0000 | AID485294 |
Luciferase | Photinus pyralis (common eastern firefly) | Potency | 21.3313 | 0.0072 | 15.7588 | 89.3584 | AID588342 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 1.9953 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 31.6228 | 0.1000 | 20.8793 | 79.4328 | AID588453 |
phosphopantetheinyl transferase | Bacillus subtilis | Potency | 35.4813 | 0.1413 | 37.9142 | 100.0000 | AID1490 |
ATAD5 protein, partial | Homo sapiens (human) | Potency | 11.5774 | 0.0041 | 10.8903 | 31.5287 | AID504467 |
TDP1 protein | Homo sapiens (human) | Potency | 29.0929 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 35.7168 | 0.1800 | 13.5574 | 39.8107 | AID1460; AID1468 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 1.2589 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
regulator of G-protein signaling 4 | Homo sapiens (human) | Potency | 50.1187 | 0.5318 | 15.4358 | 37.6858 | AID504845 |
67.9K protein | Vaccinia virus | Potency | 29.9033 | 0.0001 | 8.4406 | 100.0000 | AID720579; AID720580 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 56.2341 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
lysosomal alpha-glucosidase preproprotein | Homo sapiens (human) | Potency | 9.9237 | 0.0366 | 19.6376 | 50.1187 | AID2100 |
nuclear factor erythroid 2-related factor 2 isoform 2 | Homo sapiens (human) | Potency | 12.9953 | 0.0041 | 9.9848 | 25.9290 | AID504444 |
serine/threonine-protein kinase PLK1 | Homo sapiens (human) | Potency | 16.8336 | 0.1683 | 16.4040 | 67.0158 | AID720504 |
DNA polymerase iota isoform a (long) | Homo sapiens (human) | Potency | 2.8184 | 0.0501 | 27.0736 | 89.1251 | AID588590 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 12.5893 | 0.0079 | 8.2332 | 1,122.0200 | AID2551 |
geminin | Homo sapiens (human) | Potency | 16.3601 | 0.0046 | 11.3741 | 33.4983 | AID624296 |
histone acetyltransferase KAT2A isoform 1 | Homo sapiens (human) | Potency | 28.1838 | 0.2512 | 15.8432 | 39.8107 | AID504327 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
neuropeptide Y receptor type 1 | Homo sapiens (human) | EC50 (µMol) | 27.3160 | 9.7960 | 9.7960 | 9.7960 | AID2208 |
streptokinase A precursor | Streptococcus pyogenes M1 GAS | EC50 (µMol) | 150.0000 | 0.0600 | 8.9128 | 130.5170 | AID1902; AID1914 |
Estrogen receptor | Rattus norvegicus (Norway rat) | EC50 (µMol) | 150.0000 | 0.0060 | 22.3670 | 130.5170 | AID1914 |
Estrogen receptor beta | Rattus norvegicus (Norway rat) | EC50 (µMol) | 150.0000 | 0.0060 | 22.3670 | 130.5170 | AID1914 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (20.00) | 29.6817 |
2010's | 3 (60.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.56) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 5 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |